Abstract

Urea-formaldehyde (UF) microcapsules containing two-phase core materials in which phthalocyanine blue BGS (beta-CuPc) particles were homodispersed in tetrachloroethylene (TCE) were prepared by in situ polymerization. The effects of the various process parameters, including the type of surface modifier, the viscosity of UF prepolymer, the type of water-soluble surfactant, and the concentration of oil-soluble surfactant in the capsule core on the dispersity of beta-CuPc particles in TCE and the properties of the capsule wall and the adsorption of beta-CuPc particles on the internal surface of capsule wall were experimentally investigated. It was shown that using octadecylamine (ODA) to modify beta-CuPc particles resulted in a significant increase of the dispersing extent (DE) and the electrophoresis velocity of the particles in TCE (about 4 and 20 times more than that of unmodified). In addition, the optimal reaction conditions of the synthesis UF prepolymer were obtained by the orthogonal test. On the other hand, as the oil/water interfacial tension of emulsion was big enough, the microcapsule formed. The concentration of Span-80 in TCE was no less than 0.062 mM; the adsorption of beta-CuPc particles on internal surface of wall were restrained. Finally, the microcapsules in which beta-CuPc particles possess reversible response to dc electric field were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.