Abstract

To compare methoxy poly (ethylene glycol) (MPEG)-b-poly (e-caprolactone) (M7C10L0) and MPEG-b-poly (L-lactide) (M7C0L10), we performed block copolymerization of e-caprolactone (CL) and L-lactide (LA) to synthesize block copolymers composed of MPEG-b-poly (e-caprolactone-co-L-lactide) (MxCyLz). The obtained MxCyLz, M7C10L0, and M7C0L10 had molecular weights close to the theoretical values calculated from the CL and/or LA to MPEG molar ratios and exhibited monomodal gel permeation chromatography (GPC) curves. The micellar characterization of MxCyLz block copolymers in an aqueous phase was carried out by using NMR, dynamic light scattering (DLS), and fluorescence techniques. The diameters of micelles, measured by DLS, were 30–370 nm. The critical micelle concentration (CMC) and partition equilibrium constant (K v) depended on the block lengths and compositions of block copolymers. The degradation of the MxCyLz block copolymers mainly depends on both the length of hydrophilic MPEG segments and the proportion of the CL and LA in the hydrophobic segments present in their structure. We confirmed that MxCyLz block copolymers formed biodegradable micelles suitable for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.