Abstract

A novel poly(N-acryloyltris(hydroxymethyl)aminomethane-co-pentaerythritol triacrylate) (NAHAM-co-PETA) monolith was prepared in the 100μm i.d. capillary and investigated for capillary liquid chromatography (cLC). The polymer monolith was synthesized by in situ polymerization of NAHAM and PETA in the presence of polyethylene glycol (PEG) in dimethyl sulfoxide (DMSO) as the porogen. The porous structure of monolith was optimized by changing the ratio of NAHAM to PETA, the molecular weight and amount of PEG. To evaluate the separation performance of the resultant polymer monolith, several groups of model compounds (including nucleosides, benzoic acids and anilines) were selected to perform cLC separation. Our results showed that these model compounds can be baseline separated on the resultant poly(NAHAM-co-PETA) monolithic column with the optimized mobile phases. The column efficiency was estimated to be 87,000 plates/m for acrylamide. In addition, this monolithic column was coupled with on-line solid-phase microextraction (SPME) for the analysis of four nucleosides (uridine, adenosine, cytidine, guanosine) in urine. The limit of detection of the proposed method was in the range from 40 to 52ng/mL. The method reproducibility was obtained by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) less than 8.3% and 10.2%, respectively. Recoveries of the target analytes from spiked urine samples were ranged from 86.5% to 106.8%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.