Abstract

PurposeTo treat water pollution, especially the contamination resulted from organic dyes has aroused significant attention around the world, this study aims to prepare the metal organic framework (MOF) materials hybridizing with poly(p-phenylene terephthalamide) (PPTA) by means of a facile refluxing method and to systematically investigate adsorption performance for anionic dye Congo red as target molecule from aqueous solution.Design/methodology/approachThe MOF materials hybridized by PPTA were fabricated by virtue of a facile refluxing method, characterized by thermogravimetric analysis, X-ray powder diffraction, Fourier transform infrared and pore structure.FindingsThe results showed that pseudo-second-order kinetic model could better describe the adsorption process for all the four materials, whereas Elovich model also fitted the process for the hybrid materials with PPTA. Adsorption isotherm analyses indicated that Langmuir isotherm could be used to describe the adsorption process. Introduction of appropriate amount of PPTA could enhance the adsorption affinity of the MOF materials for Congo red, and the maximum adsorption capacity could reach as high as 1,053.41 mg/g while that of the MOF material without PPTA was 666.67 mg/g, indicating introduction of PPTA could change the microenvironment of the MOF materials and increase the adsorption sites, leading to high adsorption efficiency.Research limitations/implicationsThe microstructure of MOF hybridized materials in detail is the further and future investigation.Practical implicationsThis study will provide a method to prepare MOF materials with high efficiency to treat anionic dyes like Congo red from aqueous solution.Originality/valueOwing to the special characteristics of PPTA and similar to carbon tube, PPTA was introduced into MOF material to increased corresponding water stability. Because of aromatic ring and amide group on the surface of PPTA, the adsorption efficiency of the hybridized MOF material with appropriate amount of PPTA was greatly enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.