Abstract

Distillers dried grains with solubles (DDGS) offer high calorific value, suited for catalytic rapid pyrolysis for energy and chemical applications, yet tar and coke formation during bio-oil upgrading necessitates exploration of cost-effective, durable biocarbon-based catalysts for tar removal. In this study, a carbon-based catalyst was prepared by metal modification of alkaline biochar for catalytic pyrolysis with Distillers dried grains with solubles (DDGS) biomass. Brunauer–Emmet–Teller (BET), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) were used to characterized the morphology and microstructure of the metal-modified carbon-based catalysts. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was used to analysis the pyrolysis-gas of catalytic pyrolysis. Furthermore, the effects of the loading and metal mass ratio of carbon-based monometallic catalysts (Fe and Co) and carbon-based bimetallic catalysts (Fe-Co) on the distribution of the DDGS pyrolysis products were further investigated. The results showed that the 8wt.% of loading rate of bimetallic catalyst significantly reduced the oxygenated compounds but increased the aromatic hydrocarbons. Compared with pyrolysis without catalyst, when the catalyst was 2Fe6Co (mass ratio of Fe/Co 1:3), the hydrocarbons increased from 36.42% to 44.53%, the oxygen-containing compounds decreased from 60.36% to 52.35%, and the aromatics increased significantly from 0.73% to 25.37%. This study provides a new route of increasing the aromatic hydrocarbon content of catalytic pyrolysis to offer theoretical basis for carbon-based catalysts of biomass conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.