Abstract

The present article reports the synthesis of thoria nanoparticles (ThO2 NPs) via sol-gel process and examines the effect of calcination temperature of ThO2 on the morphology and photocatalytic degradation of indigo carmine (IC) and methylene blue (MB) under visible-light. As-synthesized white crystals of ThO2 were subjected to calcination at different temperatures, viz. 700 °C (TH-700), 800 °C (TH-800), and 900 °C (TH-900). The effect of calcination temperature on the structural, morphological, thermal, surface area-porosity, and optical properties of ThO2 NPs were investigated by diverse analytical techniques. XRD patterns show the cubic-space group Fm-3m (225) with parameter a = 5.597 Å and reveals crystallite sizes increased with calcination temperature. The bandgap energy was found to be 1.85 eV, 2.33 eV, and 2.71 eV for TH-700, TH-800, and TH-900 NPs, respectively, calculated by Kubelka-Munk (KM) plot. SEM and TEM unveil that the sample TH-700 calcined at a low temperature of 700 °C yields assembled nanosheets, while at higher temperatures, i.e., 800 °C (TH-800) and 900 °C (TH-900), produces agglomerated nanomaterials. Further, TH-700 sample exhibits enhanced photocatalytic degradation within 120 min for both IC and MB dye than TH-800 and TH-900 counterparts. Among the dyes, IC shows improved photocatalytic efficiency than MB for TH-700, owing to the increased optical absorption and improved separation of photogenerated charge carriers. The reusability study of TH-700 reveals that the catalysts were stable up to four successive cycles with no drastic changes in photocatalytic efficiency. Also, systematic photodisintegration of IC was investigated by Liquid chromatography–mass spectrometry (LC–MS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.