Abstract

In this work, a meso-macroporous analcime/sodalite zeolite composite was produced by a hybrid synthesis process between a complex template method and hydrothermal treatment at 220 °C of naturally abundant kaolinitic-rich clay, using dodecyltrimethylammonium bromide as an organic soft template to enhance the mesoporous structure. The chemical and morphological properties of the developed zeolites composite were characterized using powder X-ray diffraction (PXRD), attenuated total Reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), N2 adsorption/desorption; and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) methods were used to study the morphology, chemical composition and structure of the product. Two types of zeolite particles were obtained:(1) hollow microsphere with an attached analcime icositetrahedron of 30–40 µm in size and (2) sodalite microsphere with a ball-like morphology of 3–4 µm in size. Both N2 adsorption/desorption and surface area data confirmed the high potentiality of the produced zeolite composite to act as an excellent adsorbent to remove inorganic pollutants such as Cu, Cd, Cr, Ni, Zn, and Pb ions, organic pollutants such as dyes, phenolic compounds, and surfactants from water; and their high catalytic activity, especially in the oxidation reaction of volatile organic compounds. The catalytic activity and adsorption ability of the produced analcime/sodalite composite will be tested experimentally in future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.