Abstract
In the current study, MMWCNTs@MIL-101(Cr) (Fe3O4/multiwalled carbon nanotubes/MIL-101(Cr)) was synthesized and utilized as a new sorbent for the first time. It was employed successfully for the extraction of parabens and phthalate esters (PEs) from water and cream samples prior to their quantification with HPLC-DAD. The prepared metal-organic-framework (MOF) was characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), EDX mapping, thermogravimetric analysis (TGA), vibrating-sample magnetometer (VSM) and X-ray powder diffraction (XRD). Three phthalate esters (dimethyl phthalate (DMP), diethyl phthalate (DEP), diallyl phthalate (DAP)) and two parabens (methylparaben (MP) and butylparaben (BP)) were chosen as model analytes. Several experimental factors affecting the extraction efficiency, including pH value, nanosorbent amount, sorption time, salt concentration, sample volume, type and volume of the eluent, and elution time were investigated. The optimization of the extraction method was carried out by response surface methodology (RSM) and desirability function (DF) approach. Under the opted conditions, the method was linear in the range of 0.1–1500 μg L−1 with coefficients of determination > 0.9991. The limits of detection of PEs and parabens were found in the range of 0.03-0.15 μg L−1 (S/N = 3). The relative standard deviations were less than 7.5% and the extraction recoveries ranged from 38.04 to 70.62%. The present method was simple, rapid, inexpensive and environmentally friendly and was successfully utilized for the determination of PEs and parabens in water samples and various types of cream samples with satisfactory results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.