Abstract

Hybrid magnetic molecularly imprinted polymers (MMIPs) have the advantages of the technology of molecularly imprinted material and magnetic nanoparticles. The magnetic properties of MMIPs allow easy magnetic separation of various pollutants and analytes. A convenient and simple approach has been developed for the preparation of MMIPs based on polyamide (nylon-6) and magnetic nanoparticles. The polymer matrix was formed during the transition of nylon-6 from a dissolved state to a solid state in the presence of template molecules and Fe3O4 nanoparticles in the initial solution. Methylene blue (MB) was used as a model imprinted template molecule. The MMIPs exhibited a maximum adsorption amount of MB reached 110 µmol/g. The selectivity coefficients toward MB structural analogs were estimated to be 6.1 ± 0.6 and 2.1 ± 0.3 for 15 μM hydroxyethylphenazine and toluidine blue, which shows high MMIP selectivity. To prove the MMIPs’ specificity in MB recognition, magnetic nonimprinted polymers (MNIPs) were synthesized without the presence of a template molecule. MMIPs exhibited much higher specificity in comparison to MNIPs. To show the remarkable reusability of the MMIP sorbent, more than four MB absorption and release cycles were carried out, demonstrating almost the same extraction capacity step by step. We believe that the proposed molecular imprinting technology, shown in the MB magnetic separation example, will bring new advances in the area of MMIPs for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.