Abstract

Metal organic frameworks are widely used as adsorbent materials in recent years. In this study, the most prepared metal organic framework MIL-101 was prepared by hydrothermal method and featured magnetic property using co-precipitation method Fe3O4. Then, the prepared composite (MIL-101/Fe3O4) was first characterized using XRD, FTIR, SEM-EDS, and surface area analysis, then was used for the adsorptive removal of the most used antibiotic, ciprofloxacin (CIP). The effect of different adsorption variables which may affect the removal of CIP by MIL-101/Fe3O4 was investigated, as well as their adsorbent quantity, initial CIP concentration, pH, temperature, and contact time. The non-linear Langmuir and Freundlich isotherm were applied to experimental data. It was observed that rising solution temperature decreases adsorption efficiency, as the maximum adsorption uptake value was 63.28mgg-1 at 298K and 22.93mgg-1 at 313K, indicating the exothermic nature of the adsorption. The adsorption was studied kinetically and found to follow the pseudo-second-order kinetic model. The desorption of CIP from the MIL-101/Fe3O4 was investigated using three different eluents, and the results showed that phosphate-buffered solution was the most effective desorption eluent. Graphical abstract Schematic diagram of the preparation steps of MIL-101/Fe3O4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.