Abstract

In clinical applications for cancer treatment, chemotherapy coupled with thermotherapy is highly considered. The development of multifunctional nanocomposite materials is an appealing strategy for use in various applications including biomedical applications. We present the preparation of dopamine-modified mesoporous silica material, in which magnetic iron oxide nanoparticles (FeNP) were grown onto the outer surface via the complexation of iron (Fe(III) and Fe(II)) ions with the dopamine groups modified on the silica hybrid and subsequent chemical reduction approaches. The prepared magnetic iron oxide incorporated with mesoporous silica hybrid composite nanoparticles (FeNP@MSHC NPs) had a large surface area (346 m2/g), pore size (3.2 nm), and pore volume (0.048 cm3/g). The formation of FeNP on the outer surface of the FeNP@MSHC NPs results in superparamagnetic characteristics. Furthermore, the prepared FeNP@MSHC NPs have a high drug (Dox) loading capacity (~62%) as well as pH- and temperature-responsive drug release efficiency. In addition, the MTT assay result shows the biocompatibility of the prepared FeNP@MSHC NPs. As a result, the FeNP@MSHC NPs could be utilized in cancer treatment for pH and temperature-sensitive delivery of chemotherapeutic agents to the target sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.