Abstract

In this study, a new magnetic hybrid nanomaterial Fe3O4@SiO2@PPh3@[CrO3F]− is instituted. Firstly, magnetic Fe3O4 nanoparticles have been synthesized by hydrothermal method. Next, the produced magnetic nanoparticles were covered with a silica shell via modified Stöber method. Then, the core–shell magnetic nanoparticles system Fe3O4@SiO2 functionalization was combined by utilizing (3-chloropropyl)trimethoxysilane and triphenylphosphine, to give the cationic part for immobilization of the anionic part of the Cr(VI) catalysts including [CrO3F]−. The structure of the catalyst after immobilization was investigated by using elemental analysis, X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and solid state UV–vis. The particle size and morphology were identified by scanning electron microscope (SEM) and XRD. Magnetization properties of nanoparticles were confirmed by vibrating sample magnetometer (VSM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.