Abstract

A new magnetic mesoporous As(III) adsorbent of Fe3O4@SiO2@Ce-ZrO2 was prepared by solvothermal and sol-gel method. The core-shell adsorbent presented a high specific surface area (168.2 m2/g) and fast magnetic separation performance (5.37 A·m2/kg). Compared with Fe3O4@SiO2@ZrO2, the Ce-doped sample exhibited 12%-23% increase in As(III) uptake over pH 3-11, which was mainly attributed to the formation of bimetal M—O—As complexes. The coexisted and weakened As(III) adsorption, Ca2+ worked oppositely, but the impact of Cl- and was negligible. The As(III) maximum adsorption capacity was 24.52 mg/g at 313 K with an initial As(III) concentration of 5 mg/L at pH 7, and its kinetics was well fitted by the pseudo-second-order model. Moreover, the adsorbent exhibited remarkable recyclability. It is suggested that Fe3O4@SiO2@Ce-ZrO2 is a promising adsorbent for the advanced treatment of As(III) contaminated wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.