Abstract
Highly luminescent ZnS:Cu nanoparticles were synthesized in a coprecipitation route using aqueous salt solutions and thiopropionic acid as stabilizer. The method yields a stable, transparent particle dispersion in water and allows for a good control over particle size in the range of 3–10 nm as determined by dynamic light scattering, small angle X-ray scattering and transmission electron microscopy. Strong luminescence of the nanoparticles was observed under UV-excitation and emission colors could be adjusted in the range of blue to green by varying the Cu-doping concentration. The phase transfer of the ZnS:Cu nanoparticles into non-polar solvents using octylamine was used for a hydrophobic surface functionalization. The hydrophobic particles were used for the fabrication of transparent bulk nanocomposites via in situ-polymerization of dispersions in laurylacrylate. A high transparency of the composite materials, and the luminescence of the ZnS:Cu nanoparticles is retained during the phase transfer and the polymerization process allowing for the integration of a new luminescent functionality into the polymer material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.