Abstract

Epoxidized natural rubber (ENR) needs to be degraded into shorter chain lengths, to form liquid epoxidized natural rubber (LENR), for applications such as coating and adhesives. Since ENR contains both C=C and epoxide groups as reactive sites for degradation reactions, thus, LENR could be prepared by different methods through cleavages of C=C or epoxide groups, or a combination of both sites. Different mechanisms would produce different terminals on the LENR. This paper reports the oxidative degradation by (a) periodic acid, (b) potassium permanganate and (c) ultra violet (UV) irradiation. The degraded rubbers were characterized by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) and Fourier transform infra-red spectroscopy (FTIR). Ester and ketone terminals were formed in all the three methods, but lactone and hydrofuranic structures were observed only in degradation by UV irradiation. NMR spectrum reveals that cyclization of ENR has occurred during degradation by periodic acid. At lower periodic acid concentration, degradation takes place only via C=C cleavage, but at higher concentration, the attack to the epoxide groups becomes more prominent. Potassium permanganate has attacked both the double bonds and epoxide groups. On the other hands, epoxide group was not affected during degradation by UV irradiation, which cleaved only the C=C bonds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.