Abstract

We report on a simple, fast and convenient method to engineer lipid vesicles loaded with quantum dots (QDs) by incorporating QDs into a vesicle-type of lipid bilayer using a phase transfer reagent. Hydrophilic CdTe QDs and near-infrared (NIR) QDs of type CdHgTe were incorporated into liposomes by transferring the QDs from an aqueous solution into chloroform by addition of a surfactant. The QD-loaded liposomes display bright fluorescence, and the incorporation of the QDs into the lipid bilayer leads to enhanced storage stability and reduced sensitivity to UV irradiation. The liposomes containing the QD were applied to label living cells and to image mouse tissue in-vivo using a confocal laser scanning microscope, while NIR images of mouse tissue were acquired with an NIR fluorescence imaging system. We also report on the fluorescence resonance energy transfer (FRET) that occurs between the CdTe QDs (the donor) and the CdHgTe QDs (the acceptor), both contained in liposomes. Based on these data, this NIR FRET system shows promise as a tool that may be used to study the release of drug-loaded liposomes and their in vivo distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.