Abstract

In this paper the development of a new preparation method of liposomes containing a water soluble marker (fluorescein isothiocyanate–dextran (FITC–dextran) or zinc phthalocyanine tetrasulfonic acid (TSZnPc) using supercritical carbon dioxide (called "the supercritical liposome method") is described. The apparatus used consisted of two main parts: the high-pressure part, in which the lipid components 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and cholesterol (Chol) (7:3 molar ratio) were dissolved under pressure in supercritical carbon dioxide, and a low-pressure part, in which the homogeneous supercritical solution is expanded and simultaneously mixed with the aqueous phase to yield liposomes encapsulating the water soluble marker. Addition of 7% absolute ethanol to carbon dioxide at 25MPa and 60°C and the use of a high-pressure recycling system during 30min form the homogeneous solution with high reproducibility of both lipid components and resulted in an equal expansion profile (recovery after expansion versus time) of POPC and Chol. Incubation of the lipid components during 60min at the above mentioned conditions generated only 3% degradation. The average size of the liposomes was about 200nm and could not be influenced by the experimental conditions used. Optimal values for encapsulated volume (1.25L/mol) and efficiency (20%) of the liposomes were obtained using statistical experimental design by using the water soluble marker TSZnPc and an encapsulation capillary with 5.0cm length and 0.5mm inner diameter. The total amount of ethanol used to obtain an encapsulation efficiency of 20% was 15-fold reduced compared to the ethanol injection method of Batzri and Korn (Biochim. Biophys. Acta1973, 298, 1015–1019).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.