Abstract

Glycolipids may be potential materials to improve the instability of liposomes during storage and consumption. Curcumin-loaded liposomes with high stability were successfully prepared by glycolipids and phospholipids extracted from tilapia. The physicochemical properties analysed showed that glycolipids enhanced the surface charge of liposomes and the encapsulation ability of curcumin. The enhanced affinity of liposomes for curcumin was attributed to the stronger interaction between the head group of glycolipids and curcumin through hydrogen bonding. As predicted, glycolipids improved the storage stability of liposomes, and the thermal stability of curcumin increased from 35.95% to 54.13%. Moreover, glycolipids could resist the degradation of liposomes in the gastrointestinal tract, reducing the encapsulation efficiency changes of curcumin from 60.67% to 43.63%. Simultaneously, the liposomes formed by glycolipids could more effectively protect nerve cells from oxidative damage. Therefore, the substitution of phospholipids with glycolipids is an effective strategy to improve the stability and bioactivity of liposomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call