Abstract

A scalable and safe method was developed to prepare liposomal carriers for entrapment and delivery of genetic material. The carrier systems were composed of endogenously occurring dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP), cholesterol (CHOL) and glycerol (3%, v/v). Liposomes were prepared by a modified and improved version of the heating method in which no harmful chemical or procedure is involved. Anionic lipoplexes were formed by incorporating plasmid DNA (pCMV-GFP) to the liposomes by the mediation of calcium ions. Transfection efficiency and toxicity of the lipoplexes were evaluated in CHO-K1 cells using flow cytometry and MTT assay, respectively. Controls included DNA-Ca(2+) complexes (without lipids), anionic liposome-DNA complexes (with no Ca(2+)), and a commercially available cationic liposomal formulation. Results indicated fast and reproducible formation of non-toxic lipoplexes that possess long-term stability, high DNA entrapment capacity (81%) and high transfection efficiency. The lipoplex preparation method has the potential of large-scale manufacture of safe and efficient carriers of nucleic acid drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.