Abstract
This study prepared nanocapsules (NCs) with excellent self-controlled antimicrobial activity at pH 6–7 and humidity 45–100%, conditions in which most bacterial and fungal strains thrive. The nanocapsule substrate (NC@SiO2) was 676 nm in diameter, and the ligand-grafted capsule (NC@SiO2-g-MAA) was 888 nm. The large surface area and outer ligand brush of the NCs induced a rapid, self-controlled antibacterial response in the pH and humidity conditions needed for industrial and medical applications. Ligand-brush NCs containing an anionic antimicrobial drug had a rapid release effect because of the repellent electrostatic force and swelling properties of the ligand brushes. Controlled release of the drug was achieved at pH 6 and humidity of 45% and 100%. As many carboxylic acid groups are deprotonated into carboxylic acids at pH 5, the NC@SiO2-g-MAA had a high negative charge density. Carboxylic acid groups are anionized (–COO−) at pH 6 and above and push each other out of the capsule, expanding the outer shell as in a polymer brush to create the release behavior. The surface potential of the NC intermediate (NC@SiO2-MPS) was −23.45 [mV], and the potential of the capsule surface decreased to −36.4 [mV] when the MAA ligand brushes were grafted onto the surface of the capsule intermediate. In an antimicrobial experiment using Escherichia coli, a clear zone of 13–20 mm formed at pH 6, and the E. coli was eradicated completely at pH 6 and pH 7 when the humidity was 100%.
Highlights
The ligand-brush NCs had a suitable surface area and a release mechanism controlled by the swelling of the ligand brushes
NC formation was performed between 40 ◦ C and 80 ◦ C to confirm the shapes at different temperatures
The anion-modified NCs were formed as a container and loaded with an anionic antibacterial drug by the anionization of the grafted ligand brushes
Summary
Hydrophilicity is retained at the normal temperature of the human body, 37 ◦ C, but it changes to hydrophobicity at higher temperatures
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.