Abstract

Transient gene expression systems using protoplasts have been widely used for rapid functional characterization of genes in many plant species. Brachypodium distachyon has recently been employed as a model plant for studies on biofuel grass species and grass crops because of its small genome size, short life-span, and availability of efficient transformation systems. Here, we report the an efficient protocol for the preparation of leaf mesophyll protoplasts from Brachypodium seedlings. We also modified the polyethylene glycol (PEG)-mediated transformation procedure to optimize experimental conditions, such as duration of enzyme digestion, PEG incubation time, and plasmid DNA concentration and size. The green fluorescence protein (GFP)- and β-glucuronidase (GUS)-coding genes were used as reporters to evaluate the feasibility of this transient expression system. We found that the yield of viable protoplasts was highest after 3 h of enzymatic digestion. Viability of enzyme-digested protoplasts was moderately maintained up to 24 h in Mmg preincubation solution. In addition, the highest transient expression of reporter genes was obtained when protoplasts were transformed with 20 μg of plasmid DNA and incubated for 16 h. Together with the recent completion of the Brachypodium genome sequence, the Brachypodium transient expression system using leaf mesophyll protoplasts can be widely used for cellular, molecular, and biochemical studies of genes involved in carbon metabolism and signaling pathways mediating intrinsic and environmental cues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.