Abstract
In this paper, high thermal conductive polyethylene oxide (PEO)/reduced graphene oxide (rGO) composite is prepared via large-scale green reduction. Flexible layered PEO/GO composites are pre-prepared in aqueous solution. It is demonstrated that PEO chains can form hydrogen bonds with GO. Being driven by hydrogen bonds, GO/PEO composites show homogeneous and lateral highly oriented structures, resulting in excellent mechanical properties. The pre-prepared composite films are large scale soaked into ascorbic acid solution. GO nanosheets in the matrix of the composites can be reduced by ascorbic acid. The results indicate that PEO chains can repair the damage of the films caused by the reduction process. Therefore, the films can maintain their original configuration and still keep excellent flexibility. By comparison, pristine GO films are totally destroyed when the same reduction is experienced. Due to the presence of PEO, the lateral highly oriented structure of the composite will not be damaged. After reduction, the thermal conductivity of the composite reaches to 12.03 W m−1 K−1 along the rGO nanosheet oriented direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Polymers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.