Abstract
Abstract This article demonstrates the development of activated carbon fiber electrodes produced from hardwood kraft lignin (HKL) to fabricate electric double layer capacitors (EDLCs) with high energy and power densities using an ionic liquid (IL) electrolyte. A mixture solution of HKL, polyethylene glycol as a sacrificial polymer, and hexamethylenetetramine as a crosslinker in dimethylformamide/acetic acid (6/4) was electrospun, and the obtained fibers were easily thermostabilized, followed by carbonization and steam activation to yield activated carbon fibers (ACFs). The electrochemical performance of EDLCs assembled with the ACFs, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) as an IL electrolyte and a cellulosic separator was insufficient due to the low conductivity of the electrode. The conductivity of the electrode was improved successfully by spraying conductive carbon black (CB) onto the fibers mat during electrospinning. The CB containing electrodes with improved conductivity gave the resulting EDLCs a higher electrochemical performance, with an energy density of 91.5 Wh kg−1 and a power density of 76.2 kW kg−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.