Abstract

Abstract To investigate the potential applications of bio-based epoxy resins across diverse fields, this study synthesized a bio-based epoxy resin using itaconic acid (EIA) as the precursor material and compared its thermal, mechanical, and electrical properties with those of epoxy acrylate (EA). The findings indicate that the glass transition temperature and the 5% thermal decomposition temperature of the EIA-cured system are higher than those of EA. The breakdown field strength of the EIA-cured system is slightly higher than that of EA (35.58 kV·mm−1), suggesting that EIA exhibits stronger electrical properties compared to EA. Mechanical property tests demonstrate that the tensile strength, elongation at the fracture point, and Shore hardness of the EIA-cured system are superior to those of EA. In conclusion, EIA, serving as a matrix resin, is influenced by cross-linking density and intramolecular ester bonding and exhibits close electrical strength but superior mechanical, thermal, and degradation properties than EA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.