Abstract

In this study, we synthesized and employed an ionic gel-functionalized silica stationary phase for high-performance liquid chromatography. The successful fabrication of the stationary phase was confirmed through attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), zeta-potential measurements, and elemental analysis (EA). Comparative performance evaluation against a commercial column demonstrated the prepared column's effectiveness in the mixed mode of reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), and ion chromatography (IC). Moreover, the stationary phase exhibited exceptional retention repeatability in per aqueous liquid chromatography, showcasing its potential as an environmentally friendly analytical method. Mechanistic investigations unveiled multiple solute-stationary phase interactions, including π-π interactions, hydrogen bonding, and ion exchange. Finally, we applied the developed stationary phase for the precise detection of preservatives in carbonated beverages and jelly, achieving high levels of accuracy and recovery rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.