Abstract

An InYO 3 photocatalyst was prepared through a precipitation method and used for the degradation of molasses fermentation wastewater. The InYO 3 photocatalyst characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy, surface area and porosimetry. Energy band structures and density of states were achieved using the Cambridge Serial Total Energy package (CASTEP). The results indicated that the photodegradation of molasses fermentation wastewater was significantly enhanced in the presence of InYO 3 when compared with PbW0 4. The calcination temperature was found to have a significant effect on the photocatalytic activity of InYO 3. Specifically, InYO 3 calcined at 700°C had a considerably larger surface area and lower reflectance intensity and showed higher photocatalytic activity. The mathematical simulation results indicated that InYO 3 is a direct band gap semiconductor, and its conduction band is composed of In 5p and Y 4d orbitals, whereas its valence band is composed of O 2p and In 5s orbitals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.