Abstract

Photo-controlled release hydrogel provides a new strategy for treating tumours. Under the stimulation of external light sources, the ability to release the entrapped drug on time and space on demand has outstanding advantages in improving drug utilisation, optimising treatment, and reducing toxicity and side effects. In this study, a photo-controlled drug delivery system for disulphide cross-linked polyaspartic acid (PASP-SS) hydrogels encapsulating proteinase K (ProK) adsorbed with platinum nanoparticles (PtNPs) was designed. The injectable cysteamine-modified polyaspartic acid (PASP-SH) sol and PtNPs adsorbed by ProK (ProK-PtNPs) as regulatory factors were prepared. Then, ProK-PtNPs and lentinan were dissolved in the sol, and the oxidant was added to the matrix to form the gel in situ quickly after injection. Finally, the degradation of PASP-SS hydrogel by ProK and the controllability of drug release under near-infrared (NIR) light irradiation were elucidated. In vitro degradation of hydrogels and drug release experiments showed that the degradation rate of PASP-SS hydrogel significantly increased and the drug release rate increased significantly under near-infrared radiation. The results of cytotoxicity test showed that PASP-SS, ProK-PtNPs, and lentinan all had more than 90% cell survival rate on NIH3T3, and the lentinan released from the carrier obviously inhibited the proliferation of MCF7. PASP hydrogel has the potential to respond to on-demand light control.

Highlights

  • Injectable hydrogels have been developed over the past decades

  • Sol‐to‐gel transition Raman spectroscopy was used to monitor the dissolution of polyaspartic acid (PASP)-SS gel induced and the re-gelation of PASP-SH sol by redox (Gyarmati et al 2014)

  • We conclude that the sol–gel transition of disulphide cross-linked polyaspartic acid (PASP-SS)/PASPSH network is caused by a redox reaction

Read more

Summary

Introduction

Injectable hydrogels have been developed over the past decades. Their high water content, biocompatibility, biodegradability, and in situ gel-sol conversion capabilities make them attractive in a variety of biomedical applications (Li et al 2012, 2014; Huynh and Wylie 2019; Yang et al 2019). When stimuli-responsive hydrogels are applied to a drug delivery system, the embedded drug can be released in a controlled manner. Light-responsive hydrogels are a type of stimuli-responsive hydrogel that is currently of widespread interest, with limited side effects because illumination is noninvasive and allows remote manipulation without additional reagents (Hu et al 2017a, b; Lei et al 2017). NIR-responsive hydrogels are important in biomedical applications. The method of adjusting enzyme activity by NIR illumination is facile and feasible. It has been reported that platinum nanoparticles (PtNPs) within an enzyme allow local heating through the photothermal effect of the PtNPs upon NIR irradiation and tailoring the enzyme activity (Wang et al 2017)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.