Abstract

Allergic diseases induced by dust have seriously threatened human health, while Bactrian camels can live in a sandy environment for a long time. To prepare rabbit anti-Bactrian camel IgE antibody and explore the distribution characteristics of IgE+ secretory cells in the palatine tonsils, which lays a theoretical foundation for the distribution of local antibodies in the palatal tonsils of Bactrian camel and the study of immune function. In this study, the amino acid sequences of Bactrian camel IgE, IgA, IgM and IgG heavy chain constant regions were compared, and a specific IgE gene fragment were selected (447 bp). The recombinant plasmid pET-28a-IgE was induced in Escherichia coli BL21(DE3) by IPTG and its expression conditions were optimized. The antibody was prepared by immunizing rabbits with purified IgE recombinant protein, its titer and specificity were detected by indirect ELISA and Western blotting. Immunohistochemical and statistical methods investigated the distribution of IgE+ secretory cells in the palatine tonsils. The IgE recombinant protein was expressed in the form of inclusion bodies with a size of 16 kDa. The optimal IPTG induction concentration was 0.7 mmol/L and the induction time was 8 h. The titer of the antibody was 1:16000 by ELISA, and the antibody could specifically bind to the recombinant protein by Western blotting. IgE+ secretory cells were mainly distributed in the subepithelial compartments of reticulated crypt epithelium of the palatine tonsil of the Bactrian camel, followed by the subepithelial compartments of stratified squamous epithelium and occasionally in the extrafollicular region. The rabbit anti-Bactrian camel IgE polyclonal antibody was successfully prepared. It is confirmed that IgE exists in the palatine tonsils of Bactrian camels under normal living conditions. In addition, IgE+ secretory cells are mainly distributed in the subepithelial compartments of reticulated crypt epithelium of the palatine tonsil, which is consistent with the distribution characteristics of IgG+ and sIgA+ secretory cells in the palatal tonsils of the Bactrian camel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call