Abstract

The production of 5-hydroxymethylfurfural (HMF) by the acid-catalyzed dehydration of fructose is of great significance for the comprehensive utilization of biomass resources. However, the water generated in situ not only leads to the deactivation of the active sites but also triggers the rehydration side reaction of HMF, resulting in an unsatisfactory catalytic activity and selectivity. Herein, for the first time, metal–organic frameworks (MOFs) with strong Brønsted acidity and hydrophobicity were prepared by grafting arenesulfonic acid by a diazo method. These functionalized MOFs have a large specific surface area of 1700–2600 m2/g, a high acid density of over 1.2 mmol/g, and a strong hydrophobicity with an H2O contact angle of greater than 125°. Compared with the MOF directly functionalized with sulfonic acid, the arenesulfonic acid-functionalized MOFs, which have a stronger hydrophobicity, exhibit higher activity and selectivity (up to 98.3% yield) in the transformation of fructose to HMF. Meanwhile, these arenesulfonic acid-functionalized MOFs also exhibit an excellent HMF yield for glucose and inulin reactions via the cooperative catalysis of Lewis and Brønsted acids. Furthermore, the good activity and stability of the functionalized MOFs can be maintained after recycling for five runs. The successful preparation of hydrophobic acidic MOFs provides not only an efficient catalytic system for the synthesis of HMF but also a novel, efficient route for MOF functionalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.