Abstract
Ultrafine polyacrylonitrile (PAN) fiber mats were prepared by electrospinning and subsequently hydrolytically treated with a sodium hydroxide ethanolic/aqueous solution to impart the ability to chelate metal ions. This was achieved through the conversion of the nitrile functional groups on the surface of the PAN fibers into imine conjugated sequences, which was confirmed by Fourier-transform infrared spectroscopy. The chelating property of the hydrolyzed electrospun PAN fiber mats (i.e., H-ePAN fiber mats) was evaluated against Cu(II) ions. The amounts of the Cu(II) ions adsorbed onto the H-ePAN fiber mats were influenced by the initial pH and the initial concentration of the metal ion solutions. At the optimal pH of 5.0, the amounts of the Cu(II) ions adsorbed onto the H-ePAN fiber mats increased with an initial increase in the time the materials were in contact with the metal ion solution to finally reach the maximal, plateau values after about 5 h of immersion. The maximal adsorption capacity of the H-...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.