Abstract

Various highly fluorinated cyclopropanes 1 were prepared by reaction of the appropriate fluorinated olefins with hexafluoropropylene oxide (HFPO) at 180 degrees C. The fluorinated nitrile 1e was converted to the triazine derivatives 2a and 2b by catalysis with Ag(2)O and NH(3)/(CF(3)CO)(2)O, respectively. The fluorinated cyclopropanes reacted with halogens at elevated temperatures to provide the first useful, general synthesis of 1,3-dihalopolyfluoropropanes. At 150-240 degrees C, hexafluorocyclopropane and halogens X(2) produce XCF(2)CF(2)CF(2)X (X = Cl, Br, I) in 50-80% isolated yields. Pentafluorocyclopropanes c-C(3)F(5)Y [Y = Cl, OCF(3), OC(3)F(7) and OCF(2)CF(CF(3))OCF(2)CF(2)Z; Z = SO(2)F, CN, CO(2)Me] react regiospecifically at 150 degrees C to give XCF(2)CF(2)CFXY, c-C(3)F(5)Br reacts regioselectively with Br(2) to give a 16.7:1 mixture of BrCF(2)CF(2)CFBr(2):BrCF(2)CFBrCF(2)Br, whereas c-C(3)F(5)H reacts unselectively with I(2) to produce a statistical 2:1 mixture of ICF(2)CF(2)CFHI:ICF(2)CFHCF(2)I. Tri- and di(pentafluorocyclopropyl) derivatives 2 also undergo ring-opening reaction with halogens to give 16 and 17. Upon treatment of tetrafluorocyclopropanes 1j, 1k, and 1l with Br(2) or I(2), ring opening occurred exclusively at substituted carbons to give XCF(2)CF(2)CXY(2). Thermolysis of the ring-opened product ICF(2)CF(2)CFIOR(F) at 240 degrees C gave R(F)I and ICF(2)CF(2)COF in high yields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.