Abstract

High entropy alloy (HEA) has recently gained attention as one of the promising materials for catalytic field because of its unique structure and multi-constituent synergy catalytic applications due to its diverse element composition and multi-constituent synergy that offered excellent thermal stability, catalytic activity and corrosion resistance. In the work, we introduce the facile preparation of a self-supporting HEA-FeMnCuCo via one-step electrodeposition method, followed by generating HEA multicomponent hydroxyl oxide via a corrosion engineering approach to acquire an efficient and stable alkaline electrolytic catalyst. The prepared catalyst exhibits a remarkable catalytic performance with the overpotentials of 226 mV at current densities of 10 mA cm−2, and a low Tafel slope of 58.2 mV·dec −1. And the high activity is attributed to the formation of transition metal elements (Ni/Fe/Co) with high oxidation states by a corrosion engineering, which increase the active sites and reduced the initial potential of oxygen evolution reaction. Additionally, the HEA catalyst exhibits an excellent long-term OER stability, lasting over 100 h at 50 mA cm−2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call