Abstract

Dehydrogenation reactions are critical in hydrogen storage based on a liquid organic hydrogen carrier (LOHC) system. Speeding up the dehydrogenation rate and lowering the reaction temperature are the main focuses of LOHC dehydrogenation catalysts. In this paper, Pd/SBA-15 catalysts (Pd-IP/S15) were prepared by NaOH treatment of surface hydroxyl groups on SBA-15, the ion exchange of Na+ with Pd(NH3)42+, and then reduction of Pd ions via glow discharge plasma. The dehydrogenation performance of dodecahydro-N-ethylcarbazole on the prepared catalysts is studied. The turnover frequency of Pd-IP/S15 is 13.94 min-1 at 170°C, which is 10.25 times that of commercial Pd/C. It is ensured via the ion exchange method that Pd(NH3)42+ could be precisely targeted at the Si-OH of SBA-15 to form Si-O-Pd(NH3)42+, which effectively prevents the aggregation and uncontrollable growth of Pd nanoparticles (NPs) during the in situ reduction by plasma. Pd NPs with high dispersion are obtained on SBA-15, which enhances the catalytic activity of Pd-IP/S15. The coordination of Pd NPs with O of Si-OH on SBA-15 enabled Pd-IP/S15 to exhibit excellent catalytic stability. After 7 dehydrogenation cycles at 180°C, the dehydrogenation efficiency remained above 97%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.