Abstract

Stable concentrated aqueous dispersions of silver nanoparticles of narrow size distribution were prepared by reducing silver nitrate solutions with ascorbic acid in the presence of Daxad 19 (sodium salt of a high-molecular-weight naphthalene sulfonate formaldehyde condensate) as stabilizing agent. The latter has excellent ability to prevent the aggregation of nanosize silver at high ionic strength and high concentration of metal (up to 0.3 mol dm −3). The presence of the dispersing agent on the surface of silver particles was confirmed by ATR-FTIR spectroscopy and electrokinetic measurements, explaining both the negative charge over the entire pH range and the electrosteric effect responsible for their long-term stability. The other experimental conditions, i.e., the pH of the reacting solutions, the concentration of the stabilizing agent, and the metal/dispersant ratio, also have a significant impact on the size and stability of these dispersions. The final nanosize silver can be obtained as dried powder, and can be fully redispersed in deionized water by sonication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call