Abstract

AbstractHigh‐barrier performance, especially under extreme working conditions, is the key to replacing other types of packaging materials with paper‐based materials. In this paper, two biomass‐based polymers, sodium alginate (SA), and chitosan, were used to form a barrier coating with silicone emulsions to prepare a high‐performance paper‐based barrier material. By double coating, the water and oilproof functions were superimposed. The two prepared coated papers were characterized by infrared spectroscopy analysis, contact angle test, and scanning electron microscopy analysis, while their water resistance, oil resistance, thermal oil resistance, and thermal stability were tested. The water and oil repellency were achieved by double coating. The Cobb value of the chitosan‐silicone emulsion‐coated paper reached 5.3 g/m2, with a Kit grade of Level 12, and could block the penetration of castor oil at 80°C within 24 h. The Cobb value of the sodium alginate‐silicone emulsion‐coated paper was 41.6 g/m2, much higher than that of the uncoated paper, with a Kit grade of up to Level 10, which could slow down the rate of castor oil penetration at 80°C within 24 h. The test results showed that there was no chemical reaction between the paper‐based coatings, and the coated paper surface had good film formation, while the double coating method increased the thermal decomposition temperature of the overall barrier coating, effectively improving the thermal stability of the coating and achieving high‐barrier performance at lower cost and under extreme working conditions.Highlights Water and oil resistance under extreme operating conditions. High‐performance paper‐based barrier materials. Dual‐layer coating method for water and oil repellency. High‐barrier performance at lower cost. Excellent hot oil resistance and thermal stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.