Abstract

Abstract Artificial superamphiphobic surfaces have been arousing great attention in recent years for improved durability in practical applications. In this study, composite of dual-sized porous silica of micro-/nanoparticles and epoxy resin was coated on the glassy substrate as the micro-/nanostructure, then 60 nm porous silica particles modified by 3-aminopropyltriethoxysilane were covered on it. The monolayer of low-surface-energy fluoride-chains was grafted by click reaction of 2-(((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10- heptadecafluorodecyl)-oxy)-methyl)oxirane with amino groups in the micro-/nanostructure surface. The low free-energy long perfluorinated chain and topological features established a super-repellent surface. The surface was of the superamphiphobic property with a wide range of liquids (surface tension ranging from 72.0 to 27.2 mN m −1 ). Because of EP’s wearability and the long perfluorinated chains’ automatically migrating from the inner surface of porous silica particles to the new surface, the super-repellent surface is of not only the self-cleaning feature like the lotus’ effect, but also the durability, the self-healing and high wear-resisting abilities, even after it was heavily scratched by the knife or abraded by sandpaper. After the superamphiphobic coating had been rubbed, under a weight of 100 g, 40 sandpaper abrasion cycles, the coating still keeps its contact angles (CAs) to water; diiodomethane and ethylene glycol over 155 ± 2°, and all its sliding angles (SAs) lower than 2.7 ± 1°, respectively. These abilities are anticipated to have important practical applications because of their satisfactory of the long-life use in outdoor and large-scale fabrications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.