Abstract

Our sustainable future requires finding new, affordable and green routes to prepare nanostructured materials used in renewable energy conversion. In this work we present an electrodeposition method in a deep eutectic solvent (DES) to prepare bimetallic high surface area nanostructures of Cu and Au with tunable structure and composition. The metal electrodeposition performed in choline chloride within a urea deep eutectic solvent allows us to tailor the size, morphology and elemental composition of the deposits. We combine electrochemical methods with scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS) to characterize the electrodeposited nanostructured materials. We assess the increase of the electroactive surface area through the analysis of the lead underpotential deposition (UPD) on the prepared films. Integrated Pb UPD charge values of ca. 1600–4000 μC/cm2 for the prepared Cu-Au films have been calculated, suggesting a 5–14 fold increase of the active surface area compared to flat surfaces of polycrystalline Cu or Au. Our work reports a versatile and environmentally friendly route for the electrodeposition of Cu-Au bimetallic nanostructures in a DES. The combination of a tailored morphology and composition with the high active surface area of the nanostructured materials show that electrodeposition in DES is promising for the development of multimetallic electrocatalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.