Abstract

High-strength ceramsite was prepared from red mud, fly ash, and bentonite without any other chemical additives by a two-stage sintering process. In addition, the raw material weight ratio, and sintering condition (sintering temperature, sintering time, preheating temperature, and preheating time) were investigated, and their effects on the ceramsite properties were determined. The mineral compositions, crystalline phases, microstructures, and hazardous substances solidification were determined by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and inductively coupled plasma optical emission spectroscopy. Under the optimal synthetic conditions (RM:fly ash:bentonite = 60:30:10, preheating temperature of 450 °C, preheating time of 10 min, sintering temperature of 1150 °C, and sintering time of 25min), the ceramsite exhibited a high compressive strength of 21.01 MPa, 1-h water absorption of 1.21%, and bulk density and apparent density were 994 and 1814 kg/m3, respectively. Furthermore, the concentrations of toxic substances leaching from the ceramsite were considerably lower than the Chinese national standard (GB 3838-2002), which implies that RM-based ceramsite cannot cause secondary environmental pollution. The prepared ceramsite exhibiting a high compressive strength, low water absorption, and effective solidification of deleterious elements can be used to prepare building concrete and lightweight partition boards. Importantly, the reuse of RM for the production of ceramsite is an effective approach for the disposal of harmful RM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call