Abstract
Thin-film composite (TFC) nanofiltration (NF) membranes have been widely used in water purification processes. In harsh conditions, however, the application of TFC membrane was limited by selectivity loss because of swelling or dissolution. In this study, a defect-free polyamide (PA) layer was directly prepared on a tubular alumina ceramic membrane with a pore size of 100 nm to compensate these shortcomings. The ceramic support, owing to its superior hydrophilicity, showed excellent affinity with aqueous diamine monomers, preventing defects caused by large pore sizes. Besides, the narrow aperture distribution of support is conductive to control the water-oil interface at an appropriate position that the active layer can form near the support by simple air-drying. Different morphologies and performances were easily obtained by changing the monomer concentration and reaction time. The resulting organic–inorganic composite membrane exhibited pure water permeance of 21.7 LMH/bar and desirable rejection to Na2SO4 of 99.0%. Moreover, the prepared NF membrane showed satisfactory compaction resistance at pressure from 2 to 12 bar owing to the excellent mechanical strength of the support. The inorganic support also endowed the TFC membrane with good performance stability even at 75 °C and after soaking in different organic solvents for one week.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.