Abstract

A new preparation method of lamellar core-shell ZnO-(Si)-ZnO nanostructures with high specific surface area and high photocatalytic efficiency is presented in this article. This novel method is based on the application of controlled vacuum sublimation of the frozen liquid dispersion of silicon nanoparticles which were prepared by using the "top-down" process in cavitation Water Jet Mill disintegrator. The particle size of thus disintegrated silicon nanoparticles was measured by dynamic light scattering (DLS). Final product ZnO-(Si)-ZnO was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and amount of ZnO and Si was measured by energy dispersive x-ray spectroscopy (EDAX). Specific surface area was obtained from Brunauer-Emmett-Teller analysis (BET). The photocatalytic activity of ZnO-(Si)-ZnO nanostructure was verified by the decomposition of methylene blue (MB) solution. The Final nanomaterial shows a relatively high specific surface area of 134 m2/g and significantly higher photocatalytic activity compared to standard TiO2 (Degussa P25). Such procedure based on the controlled vacuum sublimation of frozen liquid of suitable metal salts could be a promising method for obtaining photocatalytic nanomaterials with higher specific surface area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call