Abstract

In recent years, perovskite solar cells have achieved high efficiency in small areas, but the industrialization of perovskite solar cells is still hampered by the efficiency loss of cells during area scaling. Series modules are currently the most widely used and effective modular process for perovskite solar cells, a process that requires the patterning of the layer stack in individual cells. This interconnection scheme consists of three lines, P1–P3, which are ablated using a pulsed laser beam. In this work, we developed an efficient perovskite module with a high geometric fill factor (GFF) based on a two-step spin-coating method by optimizing the laser ablation step. We constructed the entire device structure by means of a picosecond green pulsed laser, meanwhile, the dead area is greatly reduced by optimizing the parameters and process, and finally achieving an ultra-high GFF of over 99%. In addition, we investigated the effect of poor P2 and P3 ablation on the perovskite solar modules and compared the performance of the module before and after ablation optimization. We finally obtained a maximum photoelectric conversion efficiency of 22.79% with an aperture area of 12.6 cm2. Concurrently, we conducted electrocatalytic hydrogen production experiments on the prepared perovskite solar modules, and the experimental results have also shown excellent performance and good prospects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call