Abstract
Oil pollution has caused more and more serious damages to the environment, especially to water. Oil and water separation technologies based on high-performance absorbing materials have attracted extensive attentions. Herein, elasticity-enhanced bacterial cellulose (BC) aerogel is synthesized for oil/water separation through thermochemical vapor deposition (CVD) catalyzed by 1, 2, 3, 4-butanetetracarboxylic acid (BTCA). BTCA has two functions, namely, esterification with BC and catalyzing CVD. The prepared aerogel could be recovered soon after being compressed and the elastic recovery was >90 % at set maximum deformation of 80 %. And, it also exhibits vigorous fatigue resistance with an elastic deformation of >80 % after 50 cycles. The high elastic and hydrophobic aerogel is very suitable for absorbing and desorbing oils by simple mechanical squeezing. The adsorption capacity for n-hexane and dichloroethane maintain 87 % and 81 % after 50 cycles, respectively, which implies robust reusability. Importantly, the CVD could also be catalyzed by other solid acids such as citric acid and vitamin C. This design and fabrication method offers a novel avenue for the preparation of hydrophobic bacterial cellulose aerogel with high elasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.