Abstract

Due to the advantages of low cost and good thermal stability, all-inorganic CsPbI2Br carbon-based perovskite solar cells (C-PSCs) without a hole transport layer have been rapidly developed in recent years. While the carbon electrode is in direct contact with the CsPbI2Br film, higher requirements are placed on the defects and energy level arrangement of the CsPbI2Br layer, which leads to the relatively low photoelectric conversion efficiency (PCE) of C-PSCs. Herein, propylamine hydrobromide (PABr) and its derivative 3-bromopropylamine hydrobromide (3Br-PABr) were used to passivate the surface defects of CsPbI2Br C-PSCs for the first time. The results show that passivation molecules are modulated by the substituent effect, leading to a stronger interaction between amino groups and uncoordinated Pb2+ ions, which facilitates a better passivation effect of 3Br-PABr. In addition, 3Br-PABr promotes the gradient arrangement of energy levels while passivating surface defects, which accelerates the rapid extraction of holes. After the passivation by PABr and 3Br-PABr, the PCE of HTL-free CsPbI2Br C-PSCs increased from 12.15% for the control device to 13.15 and 14.04%, respectively, which are among the highest reported values of CsPbI2Br C-PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.