Abstract

To rationally design efficient and cost-effective electrocatalysts, a simple but efficient strategy has been developed to directly anchor prussian blue analogue (PBA) nanocubes on cobalt hydroxide nanoplates (PBA@Co(OH)2 ) via the in-situ interfacial precipitation process. Subsequently, the thermal treatment in the presence of sodium hydrogen phosphite enabled the successful transition into metal phosphides with the hierarchical cube-on-plate structure. When used as electrocatalytsts, the obtained bimetal phosphides exhibited good bifunctional electrocatalytic activities for hydrogen and oxygen evolution reactions with good long-term stability. Thus, an enhanced performance for overall water splitting can be achieved, which could be ascribed to the hierarchical structure and favorable composition of as-prepared bimetal phosphide for rapid electron and mass transfer. The present study demonstrates a favorable approach to modulate the composition and structure of metal phosphide for enhancing the electrocatalytic ability toward water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.