Abstract

Eight-armed A4B4-type hetero-arm star-shaped PCL-PLA polymers ((PCL)4-POSS-(PLA)4, SPLA30) with POSS core were successfully prepared via combination of the “arm-first” approach utilizing ring-opening polymerization (ROP) and click chemistry techniques. Firstly, alkyne-functional PLA and PCL polymers having arms with 30 repeating units were synthesized via ROP with utilizing propargyl alcohol as initiator and stannous octoate (Sn(Oct)2) as catalyst. Then, the obtained hetero-armed star-shaped polymers were prepared by Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction between alkyne functional polymers (1:1 PCL:PLA) and azido functional polyhedral oligomeric silsesquoxane (POSS-(N3)8) molecules. Finally, these obtained star-shaped SPLA30 was blended with neat PLA at different PLA/SPLA30 ratios (95/5 and 90/10 wt%) via melt blending by utilizing micro-compounder (a lab-scale) to enhance thermal, morphological, and mechanical properties of neat PLA. Also, different diisocyanates (1,4-phenylene diisocyanate (PDI), isophorone diisocyanate (IPDI), methylene diphenyl diisocyanate (MDI), and toluene 2,4-diisocyanate (TDI)) at constant ratio (1 wt%) were used as a chain extender bonding terminal group of polymers. It was found that addition of SPLA30 and SPLA30+ diisocyanates provided improvements in mechanical properties (especially in elongation at break and impact strength) of neat PLA. When the thermal properties were examined, it was seen that the decomposition temperatures of the blends decreased significantly compared to neat PLA and that there was a significant increment in the Tg and Tm values. In addition, it has been found that especially the diisocyanates added to provide good interfacial adhesion with polymer blends and show a homogeneous distribution on the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.