Abstract

In this paper, the novel poly(lactic-co-glycolic acid)-F127 nanospheres (PLGA-F127 NSs) were synthesized and used to establish an amperometric glucose biosensor that can be applied in whole blood directly. This property of glucose biosensor was based on the antibiofouling property of PLGA-F127 NSs. More details of preparing PLGA-F127 NSs and immobilizing glucose oxidase (GOx) on (PLGA-F127)/glass carbon electrode (GCE) were presented. Then, the electrochemical behaviors of the biosensor in whole blood were studied. The cyclic voltammetric results indicated that GOx immobilized on PLGA-F127 NSs exhibited direct electron transfer reaction, which led to stable amperometric biosensing for glucose with a detection limit of 5.57 x 10(-6) M (S/N = 3). The glucose biosensor did not respond to ascorbic acid (AA) and uric.acid (UA) at their concentration normally encountered in blood. The development of materials science will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call