Abstract
Paper sludge (PS) is generated as an industrial waste during the manufacture of recycled paper products, and amounts discharged globally are increasing annually. On the other hands, hydrogen chloride (HCl) is an acidic pollutant that is present in the flue gases of most municipal and hazardous waste incinerators. In this study, the removal of hydrogen chloride gas using the product from paper sludge at high temperatures (700oC) using a fixed-bed flow-type reactor was investigated. PS can be granulated with distilled water using granulators, and the particle shapes can be kept after calcination and alkali reaction. Calcined PS and the product after alkali reaction of calcined PS have amorphous phases and katoite (Ca3Al2(SiO4)(OH)8) phase, respectively, and both of these indicate HCl removal ability at high temperature (700oC). The product from calcined PS via alkali reaction has higher HCl fixation ability (78 mg/g) than calcined PS. Removal experiments for HCl gas showed that the removal process followed pseudo-second-order kinetics rather than pseudo-first-order kinetics. These results suggested that the product particles with HCl gas removal ability at high temperature can be prepared from PS using calcination and alkali reaction.
Highlights
During the manufacture of recycled paper, paper sludge is discharged as an industrial waste
These results suggested that the product particles with hydrogen chloride (HCl) gas removal ability at high temperature can be prepared from Paper sludge (PS) using calcination and alkali reaction
The product mainly composed of katoite (Ca3Al2(SiO4)(OH)8), which belongs to hydrogarnet group known as the materials with HCl removal ability (Figure 4(c))
Summary
During the manufacture of recycled paper, paper sludge is discharged as an industrial waste. Over 3 million tonnes of sludge are discharged per year in Japan, and approximately 8 and 2 million tonnes are discharged in the United States and the United Kingdom, respectively [1] [2] [3]. The paper industry is of great environmental importance due to the quantity of paper sludge generated, and its disposal. An economically valuable solution to this problem should include utilization of the waste materials as new products for other applications rather than disposal in a landfill
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.