Abstract
Spherical carbon (SC) with a diameter of ca. 9 µm was synthesized by a hydrothermal method using sucrose as a carbon precursor. The spherical carbon was then modified to have a positive charge, and thus, to provide a site for the immobilization of H5PMo10V2O40 (PMo10V2) catalyst. The PMo10V2 catalyst was immobilized on the surface- modified spherical carbon by taking advantage of the overall negative charge of (PMo10V2O40) 5− . The PMo10V2 catalyst immobilized on the spherical carbon (PMo10V2/SC) was applied to the vapor-phase 2-propanol conversion reaction. In the catalytic reaction, the PMo10V2/SC catalyst showed a higher 2-propanol conversion than the unsupported PMo10V2 catalyst. Furthermore, the PMo10V2/SC catalyst showed enhanced oxidation catalytic activity (formation of acetone) and the suppressed acid catalytic activity (formation of propylene and isopropyl ether) compared to the unsupported PMo10V2 catalyst. The enhanced oxidation activity of PMo10V2/SC catalyst was due to the fine dispersion of (PMo10V2O40) 5−
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.