Abstract

Graphite/nano-powder composite particles, which were prepared by coating nano-sized powder onto the surface of artificial mesophase graphite powder (MGP) in a mechanofusion system, were employed to modify the conventional carbon anode material in a lithium ion battery. The nano-size powder included nickel oxide (NiO) and ferric oxide (Fe 2O 3). The MGP/nano-powder composite particles were characterized using a scanning electron microscope, a laser particle size analyzer, a BET surface area analyzer and an X-ray powder diffractometer. The charge/discharge capacity of semi-batteries of lithium ion was measured using a battery charge and management system. The percentage of irreversible capacity decreased substantially from 7.98 (semi-battery with MGP carbon anode material) to 0.38% (semi-battery with MGP/nano-Fe 2O 3 composite particles carbon anode material) in the first round of charge/discharge tests. The maximum charge capacity increased from 288.07 (semi-battery with MGP carbon anode material) to 292.51 mA h/g (semi-battery with MGP/nano-Fe 2O 3 composite particles carbon anode material).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.