Abstract

Monolayer graphene was prepared on an Ir(111) substrate where it exhibits a 25 × 25 Å(2) moiré pattern. Molecular hydrogen was dosed first, allowing it to dissociate on open areas of the Ir substrate. The generated H atoms formed an intercalated reservoir that can bind to the graphene subsequently. Next, atomic hydrogen was dosed, which binds to the graphene sheet and also initiates the transfer of H from the Ir substrate to the graphene sheet. The opposite sides of the sheet can be hydrogenated with isotope selectivity, as a sequence of difference isotopes, H or D, can be chosen at will in the preparation procedure. Sum-frequency generation spectra prove that as consequence of the dosing sequence, C-H bonds are predominantly pointing toward the Ir substrate side when H2 is dosed first and alternatively toward the vacuum side when D2 is dosed first.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.